

Area	of Bounded	Region
------	------------	--------

		Ba	asic Level	
1.	Area under the curve $y = x$	$^{2}-4x$ within the x-axis and the lin	e <i>x</i> =2, is	[SCRA 1991]
	(a) $\frac{16}{3}$ sq. units	(b) $-\frac{16}{3}$ sq. units	(c) $\frac{4}{7}$ sq. units	(d) Cannot be calculated
2.	The area bounded by the cu	arve $y = 4x - x^2$ and the x-axis is		[MP PET 1999, 200
	(a) $\frac{30}{7}$ sq. units	(b) $\frac{31}{7}$ sq. units	(c) $\frac{32}{3}$ sq. units	(d) $\frac{34}{3}$ sq. units
3.	The area between the curve	$y = 4 + 3x - x^2$ and x-axis is		[Rajasthan PET 2001]
	(a) $\frac{125}{6}$	(b) $\frac{125}{3}$	(c) $\frac{125}{2}$	(d) None of these
4.	Area under the curve $y = $	3x+4 between $x=0$ and $x=4$, is	[Al CBSE 1979,1980]
		(b) $\frac{64}{9}$ sq. units	(c) 8 sq. units	(d) None of these
5.	The area bounded by the cu	arve $y = x^3$, x- axis and two ordinates $x = x^3$, x- axis and two ordinates $y = x^3$, $x = x^3$	ates $x = 1$ to $x = 2$ equal to	[MP PET 199
	1.5	(b) $\frac{15}{4}$ sq. units		(d) $\frac{17}{4}$ sq. units
6.	If the area above the <i>x</i> -axis,	bounded by the curves $y = 2^{kx}$ and	and $x = 0$ and $x = 2$ is $\frac{3}{\ln 2}$, then the	ne value of k is [Orissa JEE 200
	(a) $\frac{1}{2}$	(b) 1	(c) -1	(d) 2
7.	Area bounded by curve $y =$	x^3 , x-axis and ordinates $x = 1$ and	ad $x = 4$, is	
	(a) 64 sq. units	(b) 27 sq. units	(c) $\frac{127}{4}$ sq. units	(d) $\frac{255}{4}$ sq. units
8.		= c, x-axis between $x = 1$ and $x = 1$	= 4 , is	
9.	(a) c log 3 sq. units The measurement of the are	(b) 2 log c sq. units	(c) $2c \log 2$ sq. units	(d) 2c log5 sq. units
9.	(a) 1	a bounded by the coordinate axes a (b) 2	(c) 3	[MP PET 199 (d) ∞
10.		rve $y = \log x$, the x- axis and ordir		[MP PET 199
	(a) <i>e</i>	(b) 1	(c) ∞	(d) None of these
11.		$y = \log x$, x-axis and the ordinates		(d) None of these
12	(a) log 4 sq. units	(b) $\log 4+1$ sq. units $y = x e^{x^2}$, x-axis and the ordinates	(c) $\log 4-1$ sq. units	(d) None of these
12.				
	(a) $\frac{e^a + 1}{2}$ sq. units	(b) $\frac{e^{a^2}-1}{2}$ sq. units	(c) $e^{a^2} + 1$ sq. units	(d) $e^{a^2} - 1$ sq. units
13.	If area bounded by the curv	ves $y^2 = 4ax$ and $y = mx$ is $\frac{a^2}{3}$,	then the value of m is	
	(a) 2	(b) – 2	(c) 1/2	(d) None of these
14.	The area of the region (in th	e square units) bounded by the cur	ve $x^2 = 4y$, line $x = 2$ and x-axis is	[MP PET 200

Get More Learning Materials Here : 📕

CLICK HERE

386 Area Under Curves

	(a) 1	(b) $\frac{2}{3}$	(c) $\frac{4}{3}$	(d) $\frac{8}{3}$
5.	Area bounded by the paral	pola $y = 4x^2$, y- axis and the line	5	5
	(a) 3 sq. units	(b) $\frac{7}{5}$ sq. units	(c) $\frac{7}{3}$ sq. units	(d) None of these
16.	Area bounded by parabol	a $y^2 = x$ and straight line $2y = x$	c is	[MP PET 1996]
	(a) $\frac{4}{3}$	(b) 1	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$
17.	Area enclosed by the para	bola $ay = 3(a^2 - x^2)$ and x-axis i	s	
	(a) $4a^2$ sq. units	(b) $12a^2$ sq. units	(c) $4a^3$ sq. units	(d) None of these
18.	The area enclosed by the c	surve $y = \sin x$, $y = 0$, $x = 0$ and	d $x = \frac{\pi}{2}$ is	[MP PET 1995]
	(a) π	(b) 2 <i>π</i>	(c) 1	(d) 2
19.		$y = \sin x \text{ between } x = 0 \text{ and}$		
00	(a) 2 sq. units	(b) 4 sq. units $h \sin u$ between $u = -$ and	(c) 8 sq. units $2-$ is	(d) None of these
20.	Area bounded by the curv	e $y = k \sin x$ between $x = \pi$ and .	2	
	(a) 2κ sq. units	(b) 0	(c) $\frac{\kappa^2}{2}$ sq. units	(d) κ sq. units
21.	The area of the region bou	nded by the <i>x</i> -axis and the curves	defined by $y = \tan x \left(-\frac{\pi}{3} \le x \le \frac{\pi}{3} \right)$	is [Kurukshetra CEE 1998]
	(a) $\log \sqrt{2}$	(b) $-\log\sqrt{2}$	(c) 2 log 2	(d) 0
22.	The area between the curv	e $y = \sin^2 x$, x-axis and the ordin	nates $x=0$ and $x = \frac{\pi}{2}$ is	[Rajasthan PET 1996]
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{8}$	(d) π
23.	Area of the region bounde	d by the curve $y = \tan x$, tangen	t drawn to the curve at $x = \frac{\pi}{4}$ and the .	<i>x</i> -axis is [DCE 2002]
	(a) $\frac{1}{4}$	(b) $\log \sqrt{2} - \frac{1}{4}$	(c) $\log \sqrt{2} + \frac{1}{4}$	(d) None of the above
24.	The ratio of the areas bound	nded by the curves $y = \cos x$ and	$y = \cos 2x$ between $x = 0$, $x = \frac{\pi}{3}$	and <i>x</i> - axis, is [MP PET 1997]
	(a) $\sqrt{2}:1$	(b) 1:1	(c) 1:2	(d) 2:1
25.	The area bounded by the c	surve $y = \sec x$, the <i>x</i> -axis and the	e lines $x=0$ and $x = \frac{\pi}{4}$ is	[Tamilnadu PCEE 2002]
	(a) $\log(\sqrt{2} + 1)$	(b) $\log(\sqrt{2}-1)$	(c) $\frac{1}{2}\log 2$	(d) $\sqrt{2}$
26.	The area bounded by $y =$	[x] and the two ordinates $x=1$ and	<i>x</i> =1.7 is	
	(a) $\frac{17}{10}$	(b) 1	(c) $\frac{17}{5}$	(d) $\frac{7}{10}$
27.	The value of <i>k</i> for which t $\frac{16}{3}$	he area of the figure bounded by	the curve $y = 8x^2 - x^5$, the straight li	ne $x = 1$ and $x = k$ and the x-axis is equal to
	(a) 2	(b) $\sqrt[3]{8-\sqrt{17}}$	(c) 3	(d) – 1
			Advance Level	

CLICK HERE

www.studentbro.in

Get More Learning Materials Here : 🗾

R www.studentbro.in

8.	The area of the region boun	ded by the curves $y = x - 2 $, $x =$	= 1, $x = 3$ and the x-axis is	[AIEEE 20
	(a) 4	(b) 2	(c) 3	(d) 1
).	The area of the region bound	ded by $y = x - 1 $ and $y = 1$ is		[IIT Screening 19
	(a) 2	(b) 1	(c) 1/2	(d) None of these
).		2 + x, $y = 2 - x$ and $x = 2$ is		[MP PET19
	(a) 3	(b) 4	(c) 8	(d) 16
ι.	Area enclosed between the	curve $y^2(2a-x) = x^3$ and line $x = x^3$	= 2a above x-axis is	[MP PET 20
	(a) πa^2	(b) $\frac{3\pi a^2}{2}$	(c) $2\pi a^2$	(d) $3\pi a^2$
2.	Area bounded by the curve	xy - 3x - 2y - 10 = 0, <i>x</i> -axis and	the lines $x = 3$, $x = 4$ is	[AI CBSE 19
	(a) $16 \log 2 - 3$	(b) $16 \log 2 - 13$	(c) $16 \log 2 + 3$	(d) None of these
3.	The area of the triangle form	ned by the tangent to the hyperbola	$xy = a^2$ and coordinate axes is	[Rajasthan PET 20
	(a) a^2	(b) $2a^2$	(c) $3a^2$	(d) $4a^2$
I.	If a curve $y = a\sqrt{x} + bx$ particular of $y = a\sqrt{x} + bx$	asses through the point (1, 2) and the	e area bounded by the curve, line	x = 4 and x-axis is 8 square units, then
				[MP PET 2002]
	(a) $a = 3, b = -1$	(b) $a = 3, b = 1$	(c) $a = -3, b = 1$	(d) $a = -3, b = -1$
5.	The area bounded by the cur	rve $y = f(x)$, x-axis and ordinates	$x = 1$ and $x = b$ is $(b - 1)\sin(3b + 4)$	
	(x) = 2(x - 1) - 2(x + 4) + x	$in(2 \dots + 4)$	(1) $(1, 1) = \frac{1}{2}(2, 1, 1)$	[Rajasthan PET 2000]
	(a) $3(x-1)\cos(3x+4) + s$ (c) $(b-1)\cos(3x+4) + 3s$		(b) $(b-1)\sin(3x+4) +$	$3\cos(3x+4)$
			(d) None of these	
).	The area enclosed by the pa	rabola $y^2 = 4ax$ and the straight 1	ine $y = 2ax$, is	[MP PET 19
	(a) $\frac{a^2}{3}$ sq. units	(b) $\frac{1}{3a^2}$ sq. units	(c) $\frac{1}{3a}$ sq. units	(d) $\frac{2}{3a}$ sq. units
7.	The area bounded by the cu	rve $x = at^2$, $y = 2at$ and the x-axis	in $1 \le t \le 3$ is.	[Pb. CET 19
	(a) $26a^2$	(b) $8a^2$	(c) $\frac{26a^2}{3}$	(d) $\frac{104 a^2}{3}$
3.	If A_n be the area bounded	by the curve $y = (\tan x)^n$ and the l	ines $x=0$, $y=0$ and $x = \frac{\pi}{4}$, then fo	r <i>n</i> >2 [IIT 1996, Him. UCET 2002]
	(a) $A_n + A_{n-2} = \frac{1}{n-1}$	(b) $A_n + A_{n-2} < \frac{1}{n-1}$	(c) $A_n - A_{n-2} = \frac{1}{n-1}$	(d) None of these
).	The area between the curve	$y = 2x^4 - x^2$, the axis and the ord	linates of two minima of the curve	is
•	7		11	
	(a) $\frac{7}{120}$	(b) $\frac{9}{120}$	(c) $\frac{11}{120}$	(d) None of these
).	The slope of the tangent to bounded be the curve, the x -		2x + 1. If the curve passes through	the point (1, 2), then the area of the regination [IIT 19]
	(a) $\frac{5}{6}$	(b) $\frac{6}{5}$	(c) 6	(d) $\frac{1}{6}$
	(a) 6	5	(\mathbf{c}) 0	6
				Symmetrical Area
		В	asic Level	
	The area bounded by the rat	axis and the curve $y = \sin x$ and x	$=0, x = \pi$ is	[Kerala (Engg.)20
•	The area bounded by the x-a			
•	(a) 1	(b) 2	(c) 3	(d) 4
•	(a) 1	(b) 2 = $a^2(a-x)$ bounded by y-axis is	(c) 3	(d) 4 [Rajasthan PET 19

Get More Learning Materials Here : 💻

388 Area Under Curves

43.

Area bounded by the parabola $y^2 = 2x$ and the ordinates x = 1, x = 4 is 44. (a) $\frac{4\sqrt{2}}{2}$ sq. units (b) $\frac{28\sqrt{2}}{3}$ sq. units (c) $\frac{56}{3}$ sq. units (d) None of these Area bounded by the parabola $y^2 = 4ax$ and its latus rectum is 45. [Rajasthan PET 1997, 2000, 2002] (c) $\frac{8}{2}a^2$ sq. units (d) $\frac{3}{8}a^2$ sq. units (a) $\frac{2}{3}a^2$ sq. units (b) $\frac{4}{3}a^2$ sq. units The area between the curve $y^2 = 4ax$, x-axis and the ordinates x = 0 and x = a is [Rajasthan PET 1996] 46. (d) $\frac{5}{2}a^2$ (a) $\frac{4}{2}a^2$ (b) $\frac{8}{2}a^2$ (c) $\frac{2}{2}a^2$ Area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is 47. [Karnataka CET 1993] (a) πab sq. units (b) $\frac{1}{2}\pi ab$ sq. units (c) $\frac{1}{4}\pi ab$ sq. units (d) None of these The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is 48. [Rajasthan PET 2002] (a) $\frac{1}{2}(9 \sec^{-1} 3 - \sqrt{8})$ (b) $9 \sec^{-1}(3) - \sqrt{8}$ (c) $\sqrt{8} - 9 \sec^{-1} 3$ (d) None of these The area of the upper half of the circle whose equation is $(x-1)^2 + y^2 = 1$ is given by 49. [Kurukshetra CEE 1995] (b) $\int_{0}^{1} \sqrt{2x - x^2} dx$ (a) $\int_{0}^{2} \sqrt{2x - x^2} dx$ (c) $\int_{1}^{2} \sqrt{2x - x^2} dx$ (d) $\frac{\pi}{4}$ Advance Level 50. [AIEEE 2002] The area bounded by the curves $y = \ln x$, $y = \ln |x|$, $y = \ln |x|$ and $y = \ln ||x|$ is (a) 4 sq. units (b) 6 sq. units (c) 10 sq. units (d) None of these 51. Ratio of the area cut off a parabola by any double ordinate is that of the corresponding rectangle contained by that double ordinate and its distance from the vertex is (c) $\frac{2}{3}$ (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (d) 1 52. The area bounded by the curves $x = a \cos^3 t$, $y = a \sin^3 t$ is (b) $\frac{3\pi a^2}{16}$ (c) $\frac{3\pi a^2}{32}$ (a) $\frac{3\pi a^2}{8}$ (d) $3\pi a^2$ Area between Two curves **Basic Level** The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and x-axis in the 1st quadrant is 53. [IIT 2003] (b) $\frac{27}{4}$ (a) 9 (c) 36 (d) 18 The area of region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$ is 54. [Kerala (Engg.) 2002] (a) $\frac{\pi^2}{2}$ (b) $\frac{\pi^2}{2}$ (c) $\frac{\pi^2}{2}$ (d) $\frac{\pi}{4} - \frac{1}{2}$ The area bounded by the curve y = x, x-axis and ordinates x = -1 to x = 2 is 55. [Rajasthan PET 2001]

CLICK HERE

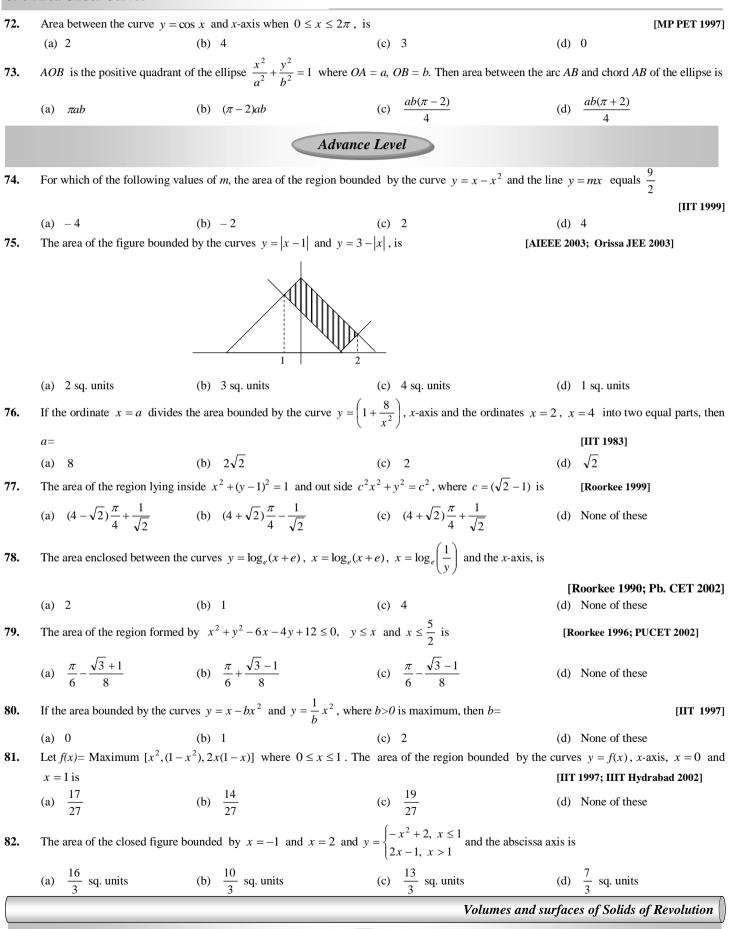
The area bounded by the parabola $y^2 = 4ax$, its axis and two ordinates x = 4, x = 9 is

(b) $4a^2.4$ (c) $4a^2(9-4)$ (a) $4a^2$

Get More Learning Materials Here :

🕀 www.studentbro.in

(d) $\frac{152\sqrt{a}}{2}$


					Area Under Curves 389
56.	(a) 0 The area bounded by the	(b) $1/2$ curves $y = x - 1$ and $y = - x + 1$	(c) 3/2 1 is	(d)	5/2 [IIT Screening 2002]
	(a) 1	(b) 2	(c) $2\sqrt{2}$	(d)	4
57.	The area bounded by the	straight lines $x = 0, x = 2$ and the c	curves $y = 2^x, y = 2x - x^2$ is		[AMU 2001]
	(a) $\frac{4}{3} - \frac{1}{\log 2}$	(b) $\frac{3}{\log 2} + \frac{4}{3}$	(c) $\frac{4}{\log 2} - 1$	(d)	$\frac{3}{\log 2} - \frac{4}{3}$
58.	The area of figure bound	ed by $y = e^x$, $y = e^{-x}$ and the straig	the third $x = 1$ is		[Karnataka CET 1999]
	(a) $e + \frac{1}{e}$	(b) $e - \frac{1}{e}$	(c) $e + \frac{1}{e} - 2$	(d)	$e + \frac{1}{e} + 2$
59.	The area bounded by the	curves $y = \log_e x$ and $y = (\log_e x)$	$)^2$ is		[Rajasthan PET 2000]
	(a) $3 - e$	(b) $e - 3$	(c) $\frac{1}{2}(3-e)$	(d) $\frac{1}{2}(e-3)$)
60.	The area bounded by the	curves $y^2 - x = 0$ and $y - x^2 = 0$	is		[MP PET 1997]
	(a) $\frac{7}{3}$	(b) $\frac{1}{3}$	(c) $\frac{5}{3}$	(d)	1
61.	The area enclosed by the	parabolas $y = x^2 - 1$ and $y = 1 - x$	x^2 is		[AMU 1999]
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(c) $\frac{4}{3}$	(d)	$\frac{8}{3}$
62.	The area bounded by cur	rve $y^2 = x$, line $y = 4$ and y-axis is	5	[Roorkee 199	95; Rajasthan PET 2003]
	(a) $\frac{16}{3}$	(b) $\frac{64}{3}$	(c) $7\sqrt{2}$	(d)	None of these
63.	Area included between the	the two curves $y^2 = 4ax$ and $x^2 = 4ax$	ay, is		
	20	16			n PET 1999; Kerala (Engg.)2002]
	(a) $\frac{32}{3}a^2$ sq. units	(b) $\frac{16}{3}$ sq. units	(c) $\frac{32}{3}$ sq. units	(d)	$\frac{16}{3}a^2$ sq. units
54 .	Area bounded by the cur	ve $x^2 = 4y$ and the straight line $x =$	= 4y - 2, is		[SCRA 1986; IIT 1981]
	(a) $\frac{8}{9}$ sq. units	(b) $\frac{9}{8}$ sq. units	(c) $\frac{4}{3}$ sq. units	(d)	None of these
65.	What is the area bounded	1 by the curves $x^2 + y^2 = 9$ and y^2	=8x		[DCE 1999]
	(a) 0	(b) $\frac{2\sqrt{2}}{3} + \frac{9\pi}{2} - 9\sin^{-1}\left(\frac{1}{3}\right)$) (c) 16π	(d)	None of these
66.	The area bounded by the	circle $x^2 + y^2 = 4$, line $x = \sqrt{3}y$ a	nd x- axis lying in the first qua	drant, is	
					, Kurukshetra CEE 1998]
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d)	π
67.	The area in the first quad	trant between $x^2 + y^2 = \pi^2$ and $y =$	5		[MP PET 1997]
	(a) $\frac{(\pi^3 - 8)}{4}$	(b) $\frac{\pi^3}{3}$	(c) $\frac{(\pi^3 - 16)}{4}$	(d)	$\frac{(\pi^3-8)}{2}$
58.	For $0 \le x \le \pi$, the area	bounded by $y = x$ and $y = x + \sin x$, is		[Roorkee Quqalifying 1998]
	(a) 2	(b) 4	(c) 2π	(d)	4π
59 .	Area bounded by $y = x$ s	$\sin x$ and x-axis between $x = 0$ and	$x = 2\pi$, is	[Roorkee 1981;	Rajasthan PET 1995]
	(a) 0	(b) 2π sq. units	(c) π sq. units	(d)	4π sq. units
70.	The area bounded by cur	ves $y = \cos x$ and $y = \sin x$ and or	dinates $x = 0$ and $x = \frac{\pi}{4}$ is	[Karı	nataka CET 2002]
	(a) $\sqrt{2}$	(b) $\sqrt{2} + 1$	(c) $\sqrt{2} - 1$	(d)	$\sqrt{2}(\sqrt{2}-1)$
71.	The area formed by trian	gular shaped region bounded by the	curves $y = \sin x, y = \cos x$ and	x = 0 is	[MP PET 2000]
	(a) $\sqrt{2} - 1$	(b) 1	(c) $\sqrt{2}$	(d)	$1 + \sqrt{2}$
			·-/ ·-	(4)	–

Get More Learning Materials Here : 📕

r www.studentbro.in

200

390 Area Under Curves

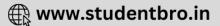
CLICK HERE

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

83.	The volume of the soli	d formed by rotating the area encl	losed between the curve $y = x^2$ and the l	line $y = 1$ about $y = 1$ is (in cubic units)
	(a) $\frac{9\pi}{5}$	(b) $\frac{7\pi}{3}$	(c) $\frac{8\pi}{3}$	(d) None of these
84.	The volume of the soli	d obtained by rotating the ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the axis of x is	[MNR 1995]
	(a) $\pi a^2 b$	(b) $\pi - b^2$	(c) $\frac{4}{3}\pi a^2 b$	(d) $\frac{4}{3}\pi ab^2$
85.	The part of the parabol	a between the parabola $y^2 = 4ax$	and the line $x = c$ is revolved about <i>x</i> -a	axis. The volume of the resulting solid is
	(a) $2\pi ac^2$	(b) πac^2	(c) $\frac{\pi c^2}{4}$	(d) $4\pi ac^2$
86.	The volume of the soli	d generated by revolving about th	e y- axis the figure bounded by the parab	ola $y = x^2$ and $x = y^2$ is
		24	-	[UPSEAT 2002]
	(a) $\frac{21}{5}\pi$	(b) $\frac{24}{5}\pi$	(c) $\frac{5}{24}\pi$	(d) None of these
87.	The volume of the frus	stum of a cone of height 6 <i>cm.</i> , an	ad radii are 5 cms and 8 cms is	
	(a) 258 cc	(b) 250 <i>cc</i>	(c) 268 <i>cc</i>	(d) 275 cc
88.	The part of the circle .	$x^2 + y^2 = 4$ between $x = 1$ and x	x = 2 is revolved about <i>x</i> -axis. The curve	d surface of the resulting solid is
	(a) 2π	(b) 4π	(c) 6π	(d) 8π
			Advance Level	
89.	The volume of a solid	obtained by revolving about y-ax	this enclosed between the ellipse $x^2 + 9y^2$	$x^{2} = 9$ and the straight line $x + 3y = 3$ in the
	first quadrant is			[MNR 1994]
	(a) 3π	(b) 4π	(c) 6π	(d) 9π
90.	is	-	radii of whose ends are respectively 10 c	
	(a) 1232 π	(b) 332π	(c) 1032π	(d) 1132π
91.	is 14π then the value	of m is equal to		istum of a cone of the volume of the frustum
02	(a) 2	(b) 4	(c) 6	(d) 8
92.			nes of any sphere. If radius of sphere is e distance of first plane from the centre of	5 <i>cm</i> and distance between the plane is 1 <i>cm</i> , f sphere is 2 <i>cm</i> [UPSEAT 1999]
	(a) $5\pi cm^2$	(b) $10 \pi cm^2$	(c) $15 \pi cm^2$	(d) $40\pi cm^2$

Get More Learning Materials Here : 💻



	Assignment (Basic and Advance Level)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	с	a	d	b	b	d	c	d	b	с	b	a	b	c	a	a	с	b	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	b	d	d	a	d	b	d	b	b	b	с	b	a	a	с	d	а	a	а
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	d	b	c	b	a	b	a	a	с	a	a	d	d	b	d	с	a	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	d	b	b	c	a	a	d	с	a	b	с	b	c	b	a	a	с	b
81	82	83	84	85	86	87	88	89	90	91	92								
а	а	d	d	а	d	а	b	а	с	с	b								

Get More Learning Materials Here : 💻

